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Abstract 

The calculated equations of state of the transition metals are dominated by the d-electron contribution to bonding and at 
the end of the 3d series the metals become magnetic. In contrast, the calculated equations of state of the rare earths are 
characterized by the lack of any f-electron contribution to bonding at ambient pressure and the metals are normally magnetic. 
Electronic structure calculations for the light actinides show that they fall naturally between the transition metals and rare 
earths. There is a large f-electron contribution to bonding, analogous to the d-electron contribution in the transition metals, 
and the light actinide metals are not magnetic. Relativistic effects upon the valence electrons are also much larger than in 
the transition metals and in actinide compounds, which frequently are magnetic, the composition of the magnetic moments 
contains features of both rare earth and transition metal magnetism. 
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1. Introduction 

Viewed in terms of their conduct ion  electrons, the 
rare earth metals are early 5d transition metals since 
the 5d shell is much less than half-filled and the 4f 
shell is chemically inert. The  actinides are more  complex. 
The  light actinides are 5f transition metals with bonding 
5f electrons whereas  the heavy actinides, which have 
an essentially chemically inert 5f shell, are early 6d 
transition metals. The characterist ic  propert ies  o f  tran- 
sition metals are due to the centrifugal potential  in 
the radial Schr6dinger equation.  The  centrifugal po- 
tential is large near the nucleus and vanishes at large 
distances. Orbitals with large values of  angular mo- 
men tum are therefore pushed away f rom the nucleus. 
The centrifugal potential  raises the energies of  states 
with higher angular momen ta  compared  with the ener- 
gies of  states with lower angular momenta .  Therefore ,  
states with large angular m o m e n t u m  and a given prin- 
ciple quan tum number  lie higher in energy than those 
of  smaller angular m o m e n t u m  and become  occupied 
later. Hence  3d states, for example, fill when the 4s 
and 4p states are already partially occupied whereas 
if it were not for the centrifugal term they would be 
core electrons before the 4s and 4p states became 
occupied.  
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The 3d and 4f states are the first d and f states in 
the Periodic Table and have no nodes to orthogonalize 
them to lower states. Their  kinetic energies are therefore  
relatively small, and their wavefunctions and densities 
are relatively contracted.  Since the size of  a 3d atom 
is de termined mostly by the 4s and 4p states, whose 
density lies further out as they have more  nodes in 
the wavefunction, the 3d density lies mostly within the 
atom. However,  because of  the centrifugal potential,  
the 3d density is also pushed away from the nucleus. 
The spherical average of  the 3d densities is therefore  
a shell at intermediate  distance from the nucleus and 
the 3d density is small at the boundary  o f  the atom. 
The effect of  the centrifugal potential  is therefore  to 
raise the energy of  what  would be filled core states to 
somewhere  close to zero energy so that the electrons 
can tunnel through to the free electron states outside 
the atom in the case of actinides or  transition metals 
or form a localized but unfilled shell in the case of  
rare earths. 

Much insight into transition metal  band structure is 
provided by the L M T O  method  [1], where there is a 
very useful approximate description of  narrow transition 
metal bands when they hybridize little with s and p 
bands. The unhybridized energy band eigenvalues are 
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E,f = C,+ AtS/ (1) 

where C~, the band centre, and At, the bandwidth 
parameter, depend on potential, but &f, the structure 
constants, depend only on structure and are independent 
of the scale of the lattice. The bandwidth parameter 
is 

1 1 
A, =- ~ SR,2(S, C,)- tz, S 2 (2) 

where Rt(S, Ct) is the wavefunction evaluated at the 
atomic sphere boundary at the energy Q. The band 
mass parameter is /zt which is unity for free electrons 
but may become very large for narrow resonances. The 
bandwidth parameter, kz, depends only on the size of 
the atomic sphere and the value of the wavefunction 
at the sphere boundary. It is therefore an atomic 
property and measures the probability of the electron 
reaching the boundary of the atom. The bandwidth is 
obtained from the second moment of the energy bands 
( E 2 ) t t  = f(E-Cz)2Nz(E)dE and may be written as 

(3) 

where (EZ)u is the second moment of the l diagonal 
structure constants, which is 28 for all fcc d bands and 
45 for all fcc f bands. The calculated band mass 
parameters for the transition metals, rare earths and 
actinides are plotted in Fig. 1. The band masses increase 
across any series owing to contraction of the orbitals 
as the extra added electron is incompletely shielded 
by other electrons within the same shell. They also 
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Fig. 1. Calculated band masses of the 3d, 4d and 5d transition metals, 
rare earths and actinides. 

decrease down a column of the Periodic Table as 
additional orthogonality nodes push wavefunctions out- 
wards. Clearly, the actinides fill the gap between the 
late 3d transition metals and the light rare earths. 

2. Relativistic effects 

The immediate effect of spin-orbit coupling on the 
energy bands of paramagnetic metals is to lead to 
distinct occupation numbers for the two spin--orbit bands 
with a given angular momentum, l. In the limit of 
vanishing spin-orbit splitting, A ..... the ratio of the 
population of the j=l+l /2  bands becomes equal to 
the ratio of their degeneracies. However, in the other 
limit when A .... is much greater than the bandwidth, 
W, the two j bands are split apart and the j= l -1 /2  
band fills first. The ratio R 2 =nj=t_ 1/2/ni=t+ 1/2 changes 
from 2//(2/+2) to infinity as the ratio Ra=As.o./W, 
increases, as long as there is a total of less than 2l 
electrons of type l. Therefore, Rz is an excellent measure 
of the importance of spin-orbit interaction in the ground 
state [2]. The ratio for d and f electrons in the actinide 
metals is plotted in Fig. 2 as a function of atomic 
number. R2 approaches 3/4 and 2/3 in the limit R~ ~ 0 
for f and d electrons, respectively. It is clear from Fig. 
2 that there are considerable departures from this ratio 
for f electrons in the metals Np-Am, but not for d- 
electrons. The reason for this is that the preferential 
occupation of the j = l -  1/2 band is determined not by 
the spin-orbit splitting alone, but by the ratio R1, which 
is inversely proportional to the bandwidth. Thus 
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Fig. 2. Ratio of the number of electrons in the j = l -  1/2 and j = l +  
1/2 bands [1/(l+ 1) for zero spin-orbit splitting] for both d and f 
electrons in the actinide metals. 
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spin-orbit interaction does not have any major effect 
on the bulk ground-state properties, even for heavy 
metals, unless the corresponding energy bands are 
narrow. 

Magnetic actinide compounds, even those with small 
lattice constants such as UN, normally have, in contrast 
to normal transition metals, very large orbital moments 
[3]. The reason is that 5f spin-orbit interaction in the 
aetinides is far larger than the 3d spin-orbit interaction 
in the much lighter 3d transition metals. This is illus- 
trated in Fig. 3, where we have plotted the spin--orbit 
interaction and bandwidths for the transition metals, 
rare earths and actinides. The bandwidths of the ac- 
tinides are less than those of the 3d transition metals, 
whereas the spin-orbit interaction is far larger. In first 
order the orbital moment of an itinerant magnet is 
zero, but in second order the spin-orbit interaction 
mixes an orbital moment into the ground state. This 
involves mixing states from across the energy bands, 
and when the bandwidth is large the mixing is small 
and vice versa. The narrow 5f bands and the large 
spin-orbit interaction in actinides produce the ideal 
situation for itinerant electrons to support the strong 
orbital magnetism, which is one of the remarkable 
features of actinide magnetism. 

3. Electronic structure of  the rare earth and 
actinide metals  

Orthogonalization to the core states increases the 
kinetic energy of the 5d, 6s and 6p states in rare earths 
and tends to exclude them from the core region. Since 
the core region shrinks with incomplete screening of 
the increased nuclear charge, the energy of the valence 
states decreases as the series is traversed. The opposite 
occurs when a given element is compressed, since the 
core then takes up more relative space. The effect is 
more pronounced for s and p states and the result is 
a net transfer of 5d to 6s electrons as the series is 
traversed. The partial s, p and d occupation numbers 
calculated for the di- and trivalent rare earth metals 
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Fig. 3. Sp in -o rb i t  spl i t t ing and bandwid ths  of the 3d, 4d and 5d 
t rans i t ion  metals ,  rare  ea r ths  and aet in ides .  

[4] are plotted as a function of atomic number in Fig. 
4. The d occupation numbers decrease throughout the 
series for both values of valence and it is precisely the 
d occupation number that is correlated with the rare 
earth crystal structure sequence. Although the 4f states 
are not part of the band structure, it is the 4f electrons, 
through screening, that are responsible for the change 
in electronic structure across the series. At a constant 
Wigner-Seitz radius, the effect of the screening of the 
increased nuclear charge by the 4f electrons is isolated, 
and is the entire cause of any changes in conduction 
electron band structure. When the number of 4f elec- 
trons for a given nuclear charge is changed, as in the 
divalent rare earths, the effect on the conduction elec- 
tron band structure is much greater. Since there is now 
one extra 4f electron and one less 5d electron, the 5d 
band becomes almost depleted by Yb. 

The energy bands in actinides rise in energy under 
compression as in the rare earths owing to increasing 
kinetic energy where now the 7s states are required 
to be orthonormal to the 6s core states. As a function 
of atomic number, band filling occurs as follows. The 
7s band in Fr takes the first electron, the 6d band 
takes most of the next three electrons between Ra and 
Th, the first real occupancy of itinerant 5f states occurs 
in Pa and thereafter the 5f band fills as far as Lr [5]. 
The gradual filling of the 5f bands is analogous to the 
filling of the d bands in transition metals, and therefore 
the atomic volumes of the actinides should be parabolic 
as a function of atomic number as first the bonding 
and then the anti-bonding orbitals become filled. Such 
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a parabolic trend is indeed observed for the metals 
Th-Pu and the analogy with the d transition series is 
correct for the light actinides. However, 5f electrons 
are localized in the heavy actinides, where the trend 
in atomic volume is similar to that for the rare earths. 

The 5f bandwidth decreases with increasing atomic 
number. This occurs because at the beginning of the 
series the potential due to the added proton contracts 
the 5f orbitals and lowers the amplitude of the wave- 
function, and hence increases the band mass, at the 
Wigner-Seitz sphere. The narrowing is most pronounced 
at the beginning of the series because later the extra 
electron added to the system enters the 5f shell and 
partially screens the nuclear charge seen by the other 
5f electrons. A similar trend is found for the 6d and 
7s states, which are located outside the 5f shell and 
therefore also see the nuclear charge partially screened. 
For fixed atomic number, the bandwidth decreases with 
increasing atomic radius since the amplitude of the 
wavefunction at the Wigner-Seitz sphere decreases. 
The 5f bandwidths evaluated at the measured atomic 
volume remain, however, nearly constant between Th 
and Pu since the volume decreases, compensating for 
the decrease in the extension of the 5f orbital. 

4. Crystal structure 

For the rare earths the structure sequence hcp ~ Sm- 
type--* dhcp ~fcc  was shown by Duthie and Pettifor 
[4a] to depend on the 5d occupation number, which 
itself is related to the Johansson-Rosengrenf-parameter 
[6] used to rationalize the structure sequence. In fact, 
the structure sequence for the rare earths is that of 
early 5d transition metals and it is also found for the 
4d transition metal, Y, and the heavy actinides which 
are 6d transition metals. Subsequent, more complete, 
treatment of the band structure problem for the rare 
earths by Skriver [4b] confirmed the essence of the 
Duthie-Pettifor theory at the same time adding accuracy 
to computed structural energy differences. By using full 
LMTO calculations, Skriver was also able to obtain the 
correct partial occupation numbers. By calculating the 
partial occupation numbers at the pressures needed to 
induce the structural transitions in La, Sm and Gd, 
Skriver was able to associate rid=2.0, 1.85, 1.75 with 
the dhcp--* fcc, Sm-type ~ dhcp, hcp--, Sm-type tran- 
sitions, respectively. 

The problem of the low-temperature structural sta- 
bility of the light actinides is difficult since Pa is bct, 
U is orthorhombic with two atoms per cell, Np is 
orthorhombic with eight atoms per cell and Pu is 
monoclinic with 16 atoms per cell. Wills and Eriksson 
[7] have made full potential LMTO calculations for 
Th, Pa and U. The total energies of the three elements 
were calculated in three structures, fcc, bct and the 

orthorhombic a-U structure. The experimentally ob- 
served structures were found to have the lowest energies. 
Wills and Eriksson [7] argue that the preference of 
materials to form open structures is due to non-sphericity 
in the charge densities, or covalent bonding. The energy 
gain from covalent bonding is at the expense of the 
electrostatic Madelung energy. In many metals the 
Madelung contribution dominates and high-symmetry 
structures are formed. When a complex of energy bands, 
such as the 5f-derived bands in the actinide metals, 
cross the Fermi energy the covalent bonding energy 
gain is particularly large and low-symmetry (or open) 
structures become stable. Evidently, there is an analogy 
with the formation of Jahn-Teller or Peierls distortions 
in the sense that complex systems have at least one 
contribution to their Hamiltonian that tends to reduce 
the symmetry of the ground state. That charge density 
waves have also been observed in actinides that also 
have low symmetry structures [8] is suggestive that the 
underlying mechanism is the same. Recent calculations 
by S6derlind et al. [9] for transition metals at expanded 
volumes show that they would also have distorted 
structures for volumes greater than are experimentally 
observable. 

The heavy actinide metals Am, Cm, Bk and Cf all 
have dhcp structures at ambient pressure and the 
analogy with the rare earth metals is inescapable. 
Eriksson et al. [4c] used the force theorem to compare 
the energies of the hcp and dhcp crystal structures 
with that of the fcc structure for the heavy actinides 
Am-Cf. These energies are plotted as a function of 
volume in Fig. 5. The dhcp structure has the lowest 
energy but at reduced volumes the fcc structure becomes 
more stable. Since a reduction in volume leads to an 
increase in the partial d occupation number, the fcc 
structure is also stable for a larger number of d electrons. 

5. Cohesive energy 

The cohesive energies of the transition metals [10] 
are not regular across the series. However, the cohesive 
energy, Ec, of an elemental metal is defined as the 
energy difference between the free atom in its ground 
state and the energy of the metal per atom at zero 
temperature and therefore contains a free atom energy 
contribution, AE~,om, which is the preparation energy 
required to take the atom from its ground state to a 
state similar to the non-magnetic ground-state config- 
uration of the metal. It is this contribution which behaves 
irregularly across the series. The cohesive energy may 
therefore be written as 

Ec=Eb-AEa,om (4) 

thus defining the valence bond energy, Eb, which is 
expected to vary more smoothly across the series. If 
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the relatively small contributions to the total energy 
of the atom from Hund's second rule and spin-orbit 
interaction are neglected, AE ........ may be separated 
according to 

M~ ...... =Ep -Es , ,  I"~DA (5) 

where Ep  is the preparation energy required to take 
the atom from its ground-state configuration to the 
magnetic ground-state configuration of the prepared 
atom, which for d electrons may be taken to be the 
sd "+~ configuration. E p  may be obtained from exper- 
imental data. The spin polarization energy is the LSDA 
equivalent of Hund's first rule energy [11] and is lost 
when the free atom is prepared in the non-magnetic 
ground state. 

When Er, and - E s p  1"spa a r e  added to the measured 
cohesive energies shown in Fig. 6(a), the valence bond 
energies of the three d transition metal series shown 
in Fig. 6(b) are obtained. The valence bond energies, 
relative to the d"+Js non-magnetic ground states of 
transition metal atoms, are, in contrast to the cohesive 
energies, approximately parabolic functions of the d 
occupation number. Hence the valence bond energy is 
that part of the cohesive energy which is essentially a 

; >  

10.0 

*> 

5.0 
c )  

, , ,--, . . . . .  ,,, 

" " 3 d  s e r i e s  

L d  s e r i e s  

--o--o-- 5d s e r i e s  //ok,, 

a} b] I \\ 

/ 
L , i J i i , l , L ~ -- i ~2 13 ~- J5 '6 ~7 J8 19 LIO 
CaScTi V Cr MnFeCoNi Cu dsdsdsdsdsdsdsdsdsds 
Sr Y Zr NbMoTc RuRhPdAg CaScTi V Cr MnFeCoNi Cu 
YbLu Hf To W IReOslr P~ Au Sr Y ~ NbMoTc RuRhPdAg 

YbLu Hf To W ReOslr Pt Au 

Fig. 6. (a) Measured cohesive energies of the d transition metal 
series; (b) calculated valence bond energies corresponding to the 
cohesive energies shown in (a). 

solid-state property, changes smoothly across a series, 
and is therefore most useful for interpolation. 

The cohesive energies of the trivalent rare earths 
should therefore be about 100 kcal mol-J relative to 
the trivalent atomic state (fnds2). However, the cohesive 
energy of gadolinium is slightly less, 95 kcal mo1-1, 
although the configuration of the free gadolinium atom 
is f75d6s2. The difference is due to the multiplet coupling 
between the open 4f and 5d shells in the gadolinium 
free atom. This coupling may easily be estimated in 
the local spin density approximation. In this approxi- 
mation, the multiplet coupling energy is -½ J4fsJX4t~tXSd ~ 
in terms of the 4f-5d exchange interaction and the 
spin components of the 4f and 5d moments. We calculate 
J4tsd to  be 0.105 eV (or 2.41 kcal tool ~) for a Gd 
atom. Therefore,  with a 4f spin moment of 7 and a 
5d spin moment of 1, the coupling energy is 8.4 kcal 
t o o l -  t .  

In Gd metal, the 4f moment remains saturated but 
the 5d states are itinerant and have a small moment 
of 0.4751x~ with a splitting of the spin up and down 
states at the Fermi energy due to exchange between 
the 4f and conduction electrons. The reduction of both 
the 5d moment and the 4f-5d exchange interaction 
means that much of the exchange energy of multiplet 
coupling is absent in the solid. The exchange interaction, 
J4~sd, is reduced to 0.092 eV (2.11 kcal tool ~) in Gd 
metal, hence the coupling is 3.5 kcal mol- l .  The dif- 
ference between the 4f-5d multiplet coupling in the 
free atom and solid is therefore 8 .4 -3 .5  kcal mol 
or about 5 kcal mol -  1. The same coupling is also present 
in about the same magnitude in other trivalent free 
rare earth atoms. The cohesive energy, relative to the 
trivalent free atoms, should therefore be about 95 kcal 
tool -1 rather than 100 kcal tool -a for metals where 
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there is no f shell. Similarly, the measured cohesive 
energy of the trivalent actinide element curium is about 
90 kcal mol- '  [12], which may be taken to be rep- 
resentative of the cohesive energy of the trivalent 
actinide metals, again relative to the corresponding 
trivalent (5f"6d7s 2) free atom configuration. 

Eriksson et al. [4] have calculated the valence bond 
energies of the rare earth metals. Fig. 7(a) shows the 
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Fig. 7. (a) Calculated cohesive energies of the divalent (lower line) 
and trivalent (upper line) lanthanides. The measured cohesive energies 
are shown by squares. (b) Calculated cohesive energies of  the divalent 
(lower line) and trivalent (upper line) actinides. The measured 
cohesive energy of Cm is shown by the square. 

calculated valence bond energies for trivalent La, Gd 
and Eu and for divalent Ba, Eu and Yb, all of which 
are atoms retaining the same valence in the solid as 
in the free atom; therefore the valence bond energies 
are also the cohesive energies in these cases, except 
for small corrections due to differences in the magnetism 
of the conduction electrons between free atom and 
solid (the calculations were not spin polarized). Also 
shown are the measured cohesive energies with an 
approximate correction made for Gd to allow for the 
change in the magnetism of the conduction electrons. 
Theory and measurement agree within a few per cent. 
The difference between the measured cohesive energies 
of the divalent and trivalent rare earths is reproduced 
very well. The difference between the cohesive energies 
of the divalent and trivalent elements is due first to 
the additional bonding electron in the trivalent elements, 
and second the d level in the trivalent atom is at a 
relatively high energy and a larger bonding energy is 
gained as the lower part of the d band is occupied. 
The interpolated valence bond energies for the other 
rare earths in Fig. 7(a) may then be used to obtain 
the cohesive energies. 

Similar cohesive energy calculations have been made 
by Eriksson et al. for the heavy actinides. Here the 
valence of the free atom ground states frequently differ 
from those of the rare earths. For example, the ground- 
state configuration of Th is d2s 2. Further, Am metal, 
unlike Eu metal, is trivalent. The heavy actinides may 
be treated in the same way as the rare earths, however, 
by making the calculations for divalent Ra, Am and 
No, i.e., the configurations fn+ls2 with n = -  1, 6, 13 
and n=0,  7, 14 for the trivalent metals. The results 
are shown in Fig. 7(b). Theory is here very much on 
its own as the only measured cohesive energy is 92.6 
kcal mo1-1 for Cm [13], to which an estimated [14] fd 
coupling energy has been added. The calculated valence 
bond energies of both di- and trivalent heavy actinides 
are similar to those of the rare earths. 

It has been suggested [15] that Lr, owing to relativistic 
effects, has a n  s2p configuration in the free atom, which 
would modify its cohesive energy. It has also been 
suggested [16] that the same configuration might remain 
in the metal, making Lr a 3a-type metal. The calculations 
of Eriksson et al. [4c] reveal that Lr is a normal d 
transition metal. For the next element, Ku, Eriksson 
et al. [4c] calculated a valence bond energy of 160 kcal 
mol-1, a value typical for a tetravalent transition metal. 

The cohesive energies of the light actinides are 
influenced by 5f bonding. The measured cohesive ener- 
gies of the light actinide metals, Pa-Am, compiled by 
Ward [17], are Th 6.2, Pa 5.93, U 5.52, Np 4.83, Pu 
3.57 and Am 2.95 eV. Bradbury [18] reported a cohesive 
energy of 6.7 eV for Pa. The cohesive energy of Ac 
has not been measured to date. Thus the cohesive 
energies of the light actinides appear to decrease reg- 
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ularly, almost linearly, across a series, which is more 
reminiscent of the trend in the cohesive energies of 
the rare earths [19] than of a transition metal series, 
in apparent conflict with both measured and calculated 
trends in the atomic volumes. The apparent conflict is 
due to the free atom preparation energies, which obscure 
the essentially parabolic trend in the 5f band contri- 
bution to the cohesive energy [20]. 

The valence bond energy, relative to a trivalent and 
paramagnetic free atom ground state, of the light ac- 
tinides in the fcc structure has been calculated by 
Brooks [20] and is plotted in Fig. 8. The calculated 
band contribution to cohesion is already falling by Pu, 
partly because the 5fs/2 band is more than half-filled 
at this stage but also because the experimental equi- 
librium volume, at which the energies were evaluated, 
is anomalously high [2]. The latter effect reduces the 
calculated band contribution to cohesion from the 
LMTO calculations even more, as here the difference 
between calculated and measured equilibrium volumes 
is even greater [5]. When a complete list of promotion 
and correlation energies, present in the free atoms but 
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reported by Bradbury [18] is not plotted. 

lost in the metal, was added to the measured cohesive 
energies, the valence bond energies deduced from the 
measured cohesive energies were found to come close 
to the calculated valence bond energies (Fig. 8). The 
added energies increase rapidly across the light actinide 
series. The dominant contribution is the spin-polari- 
zation energy, but the others are not negligible and it 
is this that is responsible for the measured decrease 
in the cohesive energy between Pa and Pu. The cohesive 
energy of actinium has never been measured but it is 
calculated to be 4.4 eV or about 100 kcal mol ~. 
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